US009317261B2

a2 United States Patent

Walter et al.

US 9,317,261 B2
Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

LEVEL BASED DATA SUPPLY FOR
REUSABLE INTERFACE COMPONENTS

Inventors: Wolfgang Walter, Heidelberg (DE);
Harald Buerner, Mannheim (DE)

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1779 days.

Appl. No.: 12/632,662

Filed: Dec. 7, 2009

Prior Publication Data

US 2011/0138337 Al Jun. 9, 2011

Int. CL.

GO6F 3/00 (2006.01)

GO6F 9/44 (2006.01)

U.S. CL

CPC ... GOG6F 8/38 (2013.01); GOGF 8/36 (2013.01)
Field of Classification Search

None

See application file for complete search history.

START

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0058286 Al* 3/2003 Dando ... 345/853
2004/0225967 Al* 11/2004 Hassanin et al. .. 715/760
2009/0132285 Al* 5/2009 Jakobovits 705/3
2010/0199223 Al* 82010 Colnercoovvenne. 715/853

* cited by examiner

Primary Examiner — Anil N Kumar
(74) Attorney, Agent, or Firm — Dilworth IP, LLC

(57) ABSTRACT

A system and method for handling reusable graphical com-
ponents in a dynamic environment. A configuration is buff-
ered in a computer system. An object corresponding to a
graphical component is instantiated and assigned a level
within the graphical hierarchy. The object is configured based
on its location in the hierarchy from the buffered configura-
tion. The object reads its parent identifier from a level buffer
based solely on its assigned level and writes its object iden-
tifier into the level buffer in association with its assigned
level.

13 Claims, 3 Drawing Sheets

202
| INSTANTIATE ROOT OBJECT I’\/

1

204

READ AND BUFFER
CONFIGURATION

I,\/

!

[BUILD TREE WITH

OBJECT (LEVEL 1)

ROOT

BUFFER

[WRITE ID TO LEVEL

v

INSTANTIATE NEXT LEVEL,
ASSIGN LEVEL, AND
CONFIGURE BASED ON
CONFIGURATION

1

DISPLAY
ASSQCIATE WITH
OBJECT

CREATE WINDOW ON THE

212
./

THE

READ PARENT ID FROM
LEVEL BUFFER

-

ADDITIONAL
LEVEL?

BUFFER
1D CHANGE?

LEVEL IDS

INVALIDATE ALL HIGHER

‘I/VZZ 0

S

U.S. Patent Apr. 19,2016 Sheet 1 of 3 US 9,317,261 B2

106
)
DISPLAY
BENE 114
I~
===
130 E] LEVEL 2 (CHILD OF LEVEL 1)
P! -
o !
;! ;134
| : —
| !
132\5\: | 116
T e
1 >
E | LEVEL 1 LEVEL 3 (CHILD OF LEVEL 2) ! i
N ¥
. N 104 LL1/36
___________________________ I
Lo 1
! : ____/ | :
GUI GENERATOR Do 118 | !
I
7 L VLD N
i i
122 | cHaANGE | “---pl2 [DCE Fr-'|
| - L 1T_JABC |-
CONFIG
PROCESSOR
120
102

FIG. 1A

US 9,317,261 B2

Sheet 2 of 3

Apr. 19,2016

U.S. Patent

91l

147"

gl Old

(z 1947 J0 PIIUD) € 90T

[bua7] | Us%) | S uoduasag || NPONOIMONAS N IAON S

| [9A07

[PsyooT sequiny abueyy

1 saquny sbueyy
[] iowanseapjoiun
Kiueny felisjey
eusjely

- WSPON aImonIS 300N S
sWeus JuBliep dnpo) =)
[][i s ogsgany || TePoNemanS T 300NS
i HOPONOMONIS Y I0ON'S

) 8WJojsiiesaq {1 1eponeinppnAS | 300N S

<] | HOPONaimanAS K 300N S
| _.||||._ 9epoNaImonIs 9 73CONS

49PN BINPRIRS 4 J0ON S

N
N
N
BlEQ aARASIUIUPY I UONeZLOYiNY | saslisloriel) | Sasset) Fsuatndo() suoildiossg § ejeq E._mcwo—— [9PON 8INjoNAS ﬁlwm_Ozdx
N
!
W
W
|

YA
<m » J8poNainpnls 3 7340N S

(1 19A97 JO plIYyD) Z [9A8]

O o [i§]¢ QLY N O O | nm] oweepssy] ¢
o 8] ISV 7 1NOD IVRISAL SW =] O | 700070¢0ND|) luellep $s500y }
8] O [[S] | 1NOJ IYWISIL SN a n] EEHEN ¢
2]

= 2 ({OPONaIMINIS 0 JOON_SW
{1588] | SH } SN DPON&INPNIS D IAON SK 7

=]
o] 50T ST D) JATATICER)

a a
VB[UONERT 10] PSR PRYI0T JBquiN 8DLeL) VoIS JUeieA 1npoid gapoNampnsS g7IAON SV <

[7 uogesnbiyuog|[snjejg aBuewy) moy sjean) [1ueiep aweuoy] [siereq] Fodig]

VOpONeIMIS Y JGON SWV ¢

MIIALS,

Fswal] Fsena] [a[swelf v]mous
ARG PNPosd

@

[suoound puonippy || uoijeinwig sjeanay | [uopepmwig 3 |{"ein]|) pasooig | fseung osug] [useuio]

-- — ETE
3jeq Aoy SSY Idd SWSSE) \yopoy sedy uonduosaq yIOON SN noniIG onpoid | uoijeinui

v J0ON_SW ‘einan)g jonpoid Aejdsig

DPRE-C-

U.S. Patent

Apr. 19,2016 Sheet 3 of 3

(START ’

»
Lt

4

202
INSTANTIATE ROOT OBJECT [~

4 204
READ AND BUFFER Ny
CONFIGURATION
A 206

BUILD TREEWITH ROOT |}~

OBJECT (LEVEL 1)

d

. 208

WRITE ID TO LEVEL Ny,
BUFFER

A

INSTANTIATE NEXT LEVEL, 210
ASSIGN LEVEL, AND —~/
CONFIGURE BASED ON
CONFIGURATION

A

CREATE WINDOW ON THE 212
DISPLAY ~/
ASSOCIATE WITH THE
OBJECT

4

READ PARENT ID FROM Ny
LEVEL BUFFER

ADDITIONAL

LEVEL?

NO

¥

BUFFER
ID CHANGE?

220
INVALIDATE ALL HIGHER ~

LEVEL IDS

US 9,317,261 B2

FIG. 2

US 9,317,261 B2

1
LEVEL BASED DATA SUPPLY FOR
REUSABLE INTERFACE COMPONENTS

BACKGROUND OF THE INVENTION

1. Field

Embodiments of the invention relate management and use
of graphical user interface components. More specifically,
embodiments of the invention relate reuse of user interface
components in dynamic hierarchical applications.

2. Background

Historically, where hierarchical user interface components
have been employed, children components have required
knowledge of the parent key information of the parent object.
This is required knowledge of the parent and placement
within the hierarchy at design time. Such an approach
requires significant work to integrate or reuse components in
an increasingly dynamic environment.

SUMMARY

A system and method for handling reusable graphical com-
ponents in a dynamic environment is disclosed. A configura-
tion is buffered in a computer system. An object correspond-
ing to a graphical component is instantiated and assigned a
level within the graphical hierarchy. The object is configured
based on its location in the hierarchy from the buffered con-
figuration. The object reads its parent identifier from a level
buffer based solely on its assigned level and writes its object
identifier into the level buffer in association with its assigned
level.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example and not by
way of limitation in the figures of the accompanying drawings
in which like references indicate similar elements. It should
be noted that references to “an” or “one” embodiment in this
disclosure are not necessarily to the same embodiment, and
such references mean at least one.

FIG. 1A is a schematic block diagram of a system of one
embodiment of the invention.

FIG. 1B is a more detailed screen shot of an example
display in one embodiment of the invention.

FIG. 2 is a flow diagram of operation in one embodiment of
the invention.

DETAILED DESCRIPTION

FIG. 1A is a schematic block diagram of a system of one
embodiment of the invention. Processor 102 is coupled to a
storage unit 104 and display 106. Storage unit 104 retains a
configuration file 120 and a level buffer 118. As explained in
greater detail below, the level buffer is an indication of a
hierarchical level in association with an object ID corre-
sponding to an object associated with a window to be ren-
dered on display 106. As used herein, a reusable graphical
component alternatively referred to as a user interface build-
ing block (UIBB) includes an object, a configuration and a
window.

Initially, a root object is selected and instantiated. Root
object is assigned level one and an associated window is
rendered to display 106 by graphical user interface generator
122 executing on processor 102. The level one window 112
can be seen on display 106. Once rendered, the root object
writes 130 its identification to level buffer 118 by default in
association with level one, here (ABC).

10

15

20

25

30

35

40

45

50

55

60

65

2

An object that is a child of the root object and, therefore,
corresponds to level two is instantiated. An associated win-
dow 114 nested within window 112 is rendered by graphical
user interface generator 122. The object corresponding to
level two knows only its level (level two), but not its parent.
The object reads 134 its parent identification from level buffer
based on its level (by selecting the next level down) and uses
the parent ID into configuration file 120 to configure window
114.

Once configured, the level two object writes 132 its object
1D to level buffer 118 in association with level two. Display
window 116 is associated with a child object of level two (a
level three object) and is nested within window 114. The level
three object reads a level two ID from level buffer 118 based
onits level, and uses its level and its parent ID to configure the
window. The level three object then writes its ID to level
buffer 118. This process may be repeated an arbitrary number
of times.

Because the level of a component is defined at runtime and
configured based on its position in the hierarchy at that point,
a component can be reused at different levels and assume a
variety of different configurations. This provides great flex-
ibility in reuse of user interface components. In some embodi-
ments, a static level assignment can be passed to a component
via the configuration. In such an embodiment, if a static level
assignment is passed, it overrules the dynamic level determi-
nation for that component.

A change module 124 executing on the processor watches
the level buffer. If a change in one of the object IDs occurs, the
change module invalidates all object IDs at a higher level. For
example, if the object identifier for level one were changed,
e.g., 10 AB'C, all other object IDs in the level buffer would be
invalidated. If, e.g., the level two object identifier changed to,
e.g., DC'E, level one would not be invalidated but all other
levels would. FIG. 1B provides a more detailed screen shot of
an example displayed in one embodiment of the invention.
Windows for level one 112, level two 114 and level three 116
are configured successively at runtime based on their position
within the hierarchy.

FIG. 2 is a flow diagram of operation in one embodiment of
the invention. At block 202 a root object is instantiated and
assigned a root level. A configuration is read and buffered at
block 204. At block 206, a tree is built with the root object in
the configuration as level one. At block 208, the identifier for
the object is written to the level buffer. On the first pass
through, a level defaults to level one for the root object. At
block 210, a child object of the predecessor level is instanti-
ated and assigned the current level and configured based on
the configuration file buffered in block 204. At block 212, a
window is created on the display in association with the
object. At block 214, the object reads the parent ID from the
level buffer.

A determination is made at decision block 216 if additional
levels exist to instantiate. If so, the current level object writes
its ID to level buffer at 208 and the process continues. If no
additional levels are to be instantiated and a decision is made
at decision block 218 whether a change has occurred in the
level buffer. If a change has occurred, all IDs at a higher level
are invalidated at block 220. The process may then begin
again.

While embodiments of the invention are discussed above in
the context of flow diagrams reflecting a particular linear
order, this is for convenience only. In some cases, various
operations may be performed in a different order than shown
or various operations may occur in parallel. It should also be
recognized that some operations described with respect to

US 9,317,261 B2

3

one embodiment may be advantageously incorporated into
another embodiment. Such incorporation is expressly con-
templated.

Elements of embodiments of the present invention may
also be provided as a machine-readable medium for storing
the machine-executable instructions. The machine-readable
medium may include, but is not limited to, flash memory,
optical disks, compact disks read only memory (CD-ROM),
digital versatile/video disks (DVD) ROM, random access
memory (RAM), erasable programmable read-only memory
(EPROM), electrically erasable programmable read-only
memory (EEPROM), magnetic or optical cards.

In the foregoing specification, the invention has been
described with reference to the specific embodiments thereof.
It will, however, be evident that various modifications and
changes can be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative rather than a restrictive
sense.

What is claimed is:

1. A method comprising:

buffering a configuration in a computer;

instantiating an object corresponding to a graphical com-

ponent having a hierarchical level assigned at instantia-
tion;

configuring the instantiated object based on the buffered

configuration;

reading a parent identifier for a parent from a level buffer

based on the hierarchical level assigned without knowl-
edge of the parent; and

writing an object identifier for the object in the level buffer

in association with the hierarchical level assigned.

2. The method of claim 1 further comprising:

associating a window on a display with the instantiated

object.

3. The method of claim 1 further comprising:

invalidating identifiers in the level buffer at all levels higher

than a changed entry.

4. The method of claim 1 further comprising:

accepting, in the computer, a selection of a root object;

reading a configuration for the root object from a configu-

ration file;

instantiating the root object; and

inserting a root identifier in a lowest level of the level

buffer.

5. The method of claim 1 where in configuring comprises:

retrieving data to configure the object based on the parent

identifier.

6. A system comprising:

an electronic display;

4

a graphical user interface generator to manipulate the dis-
play;

a plurality of reusable graphical components, each compo-
nent having an associated window to be displayed on the

5 electronic display; and

a configuration file to dynamically define a configuration
foreach ofthe graphical components based on a position
of the respective component within a hierarchy.

7. The system of claim 6 further comprising:

19 4 level buffer from which each reusable graphical compo-
nent having a level greater than one reads a parent iden-
tifier and writes its own identifier without knowledge of
the parent.

s 8 The system of claim 7 further comprising:

a change module that invalidates all entries in the level

buffer above a changed level.

9. A non-transitory computer readable medium containing
instructions that when executed by a processor cause the
processor to:

buffer a configuration in a computer;

instantiate an object corresponding to a graphical compo-

nent having a hierarchical level assigned at instantiation;
configure the instantiated object based on the buffered
configuration;

read a parent identifier for a parent from a level buffer based

on the hierarchical level assigned without knowledge of
the parent; and

write an object identifier for the object in the level buffer in

association with the hierarchical level assigned.

10. The computer readable medium of claim 9 further
containing instructions causing the processor to:

associate a window on a display with the instantiated

object.

11. The computer readable medium of claim 9 further
containing instructions causing the processor to:

invalidate identifiers in the level buffer at all levels higher

than a changed entry.

12. The computer readable medium of claim 9 further
containing instructions causing the processor to:

20

25

30

35

40 , . .
accept, in the computer, a selection of a root object;
read a configuration for the root object from a configura-
tion file;
instantiate the root object; and
5 insert a root identifier in a lowest level of the level buffer.

13. The computer readable medium of claim 9 wherein the
instruction causing the processor to configure comprise
instructions causing the processor to:

retrieve data to configure the object based on the parent

0 identifier.

